当前位置: 首页 > 文章 > 基于小波广义回归神经网络的粮食产量预测模型 湖北农业科学 2011,50 (10) 200-202
Position: Home > Articles > Prediction Model of Food Yield Using Wavelet Generalized Regression Neural Network Hubei Agricultural Sciences 2011,50 (10) 200-202

基于小波广义回归神经网络的粮食产量预测模型

作  者:
于平福;陆宇明;韦莉萍;梁毅劼;苏晓波;孔令孜;兰宗宝
单  位:
广西农业科学院农业科技信息研究所
关键词:
粮食产量预测;小波分析;GM(1,1)模型;广义回归神经网络
摘  要:
将小波分析与广义回归神经网络(GRNN)相融合,构建了一种小波广义回归神经网络(WGRNN)模型。该模型应用于我国粮食总产量预测,其预测结果在精度上均优于单一的GRNN预测模型和GM(1,1)灰色预测模型,既具有神经网络非线性逼近能力和自学习能力的特性,又具有小波在时、频两域表征局部特征的功能,可为粮食产量预测的定量化和智能化提供一条新途径。
译  名:
Prediction Model of Food Yield Using Wavelet Generalized Regression Neural Network
作  者:
YU Ping-fu,LU Yu-ming,WEI Li-ping,LIANG Yi-jie,SU Xiao-bo,KONG Ling-zi,LAN Zong-bao(Agriculture and Technology Information Research Institute,Guangxi Academy of Agricultural Sciences,Nanning 530007,Guangxi,China)
关键词:
prediction of food yield;wavelet analysis;grey model GM(1,1);generalized regression neural network
摘  要:
Wavelet generalized regression neural network(WGRNN) model was constructed using wavelet analysis and generalized regression neural network(GRNN).This prediction model had better precision on predicting total food yield during 2007~2008 if compared to GRNN and grey model GM(1,1),and it did not only have the advantages of nonlinear mapping approximation ability and convenience of calculation of neural network,but also the function of showing partial characteristics on time and frequency of wavelet analysis.It would provide a new method on quantification and intelligentialization of predicting food yield.

相似文章

计量
文章访问数: 14
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊