当前位置: 首页 > 文章 > In Situ Measurement of Ammonia Concentration in Soil Headspace Using Fourier Transform Mid-Infrared Photoacoustic Spectroscopy 土壤圈(英文版) 2015,25 (4)
Position: Home > Articles > In Situ Measurement of Ammonia Concentration in Soil Headspace Using Fourier Transform Mid-Infrared Photoacoustic Spectroscopy Pedosphere 2015,25 (4)

In Situ Measurement of Ammonia Concentration in Soil Headspace Using Fourier Transform Mid-Infrared Photoacoustic Spectroscopy

作  者:
Changwen Du;Jiao Wang;Zijun Zhou;Yue Shen;Jianmin Zhan
单  位:
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China;State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)
关键词:
concentration;headspace;nh3;soil;experiment;coated ure
摘  要:
Ammonia (NH3) volatilization is one of the important pathways of nitrogen loss in alkaline soil, and the NH3 concentration in soil headspace is directly linked with the NH3 volatilization. Ammonia was characterized by Fourier transform mid-infrared photoacoustic spectroscopy (FTIR-PAS) and two typical absorption bands in the region of 850-1 200 cm(-1) were observed, which could be used for the prediction of NH3 concentration in the soil headspace. An alkaline soil from North China was involved in the soil incubation, pot and field experiments under three fertilization treatments (control without N input (CK), urea and coated urea). Ammonia concentrations in the soil headspace were determined in each experiment. In the soil incubation experiment, the NH3 emissions were initiated by the N input, reached the highest concentration on day 2, and decreased to the level as measured in CK after 8 d, with significantly higher NH3 emissions in the urea treatment compared to coated urea treatment, especially during the first 4 d. The NH3 concentration in soil headspace of the pot experiment showed the similar dynamics as that in the incubation experiment; however, the NH3 concentration in the soil headspace in the field experiment demonstrated a significantly different emission pattern with those of the incubation and pot experiments, and there was a 4-d delay for the NH3 concentration. Therefore, the NH3 concentration in the incubation and pot experiments could not be directly used to model the real NH3 emission in the field due to the differences in fertilization method and application rate as well as soil temperature and soil disturbance. It was recommended that light irrigation in the second week after fertilization and involvement of controlled release coated urea could be used to significantly decrease N loss from the perspective of NH3 volatilization.

相似文章

计量
文章访问数: 13
HTML全文浏览量: 0
PDF下载量: 0

所属期刊

推荐期刊